首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43358篇
  免费   4747篇
  国内免费   3822篇
电工技术   2051篇
技术理论   1篇
综合类   4775篇
化学工业   7390篇
金属工艺   4335篇
机械仪表   5426篇
建筑科学   3873篇
矿业工程   2268篇
能源动力   1114篇
轻工业   2793篇
水利工程   1027篇
石油天然气   2809篇
武器工业   627篇
无线电   2037篇
一般工业技术   4409篇
冶金工业   1578篇
原子能技术   255篇
自动化技术   5159篇
  2024年   218篇
  2023年   1302篇
  2022年   2241篇
  2021年   2291篇
  2020年   1809篇
  2019年   1420篇
  2018年   1262篇
  2017年   1422篇
  2016年   1554篇
  2015年   1568篇
  2014年   2334篇
  2013年   2078篇
  2012年   2853篇
  2011年   3080篇
  2010年   2416篇
  2009年   2630篇
  2008年   2200篇
  2007年   2954篇
  2006年   2762篇
  2005年   2307篇
  2004年   1829篇
  2003年   1714篇
  2002年   1392篇
  2001年   1122篇
  2000年   985篇
  1999年   794篇
  1998年   676篇
  1997年   495篇
  1996年   441篇
  1995年   378篇
  1994年   355篇
  1993年   221篇
  1992年   174篇
  1991年   166篇
  1990年   116篇
  1989年   88篇
  1988年   77篇
  1987年   33篇
  1986年   27篇
  1985年   28篇
  1984年   18篇
  1983年   15篇
  1982年   14篇
  1981年   9篇
  1980年   21篇
  1979年   7篇
  1976年   3篇
  1975年   4篇
  1959年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Carbene‐metal‐amides (CMAs) are a promising family of donor–bridge–acceptor molecular charge‐transfer (CT) emitters for organic light‐emitting diodes. A universal approach is demonstrated to tune the energy of their CT emission. A blueshift of up to 210 meV is achievable in solid state via dilution in a polar host matrix. The origin of this shift has two components: constraint of thermally‐activated triplet diffusion, and electrostatic interactions between guest and polar host. This allows the emission of mid‐green CMA archetypes to be tuned to sky blue without chemical modifications. Monte‐Carlo simulations based on a Marcus‐type transfer integral successfully reproduce the concentration‐ and temperature‐dependent triplet diffusion process, revealing a substantial shift in the ensemble density of states in polar hosts. In gold‐bridged CMAs, this shift does not lead to a significant change in luminescence lifetime, thermal activation energy, reorganization energy, or intersystem crossing rate. These discoveries offer new insight into coupling between the singlet and triplet manifolds in CMA materials, revealing a dominant interaction between states of CT character. The same approach is employed using materials which have been chemically modified to alter the energy of their CT state directly, shifting the emission of sky‐blue chromophores into the practical blue range.  相似文献   
92.
Since its first introduction in 2016, cold sintering process (CSP) has gained worldwide interest from the scientific community as green and innovative fabrication route due to the dramatic reduction of processing time, energy, and costs. Cold sintering resembles the geological formation of rocks where a ceramic powder is densified with the aid of a liquid phase under an intense external pressure and limited heating conditions (below 350 °C). Up to date, tens of different materials, including composites, have been successfully processed through CSP and extraordinary results in terms of densification, microstructure and final properties have been achieved. In the present review, processing features and variables, possible densification mechanisms and issues also for the realization of ceramic-based composites are explored. Advantages with respect to existing techniques are analysed and current challenges are described to lay the ground for new processing opportunities to be faced in the near future.  相似文献   
93.
电力系统维护是电力系统稳定运行的重要保障,应用智能算法的无人机电力巡检则为电力系统维护提供便捷。电力线提取是自主电力巡检以及保障飞行器低空飞行安全的关键技术,结合深度学习理论进行电力线提取是电力巡检的重要突破点。本文将深度学习方法用于电力线提取任务,结合电力线图像特点嵌入改进的图像输入策略和注意力模块,提出一种基于阶段注意力机制的电力线提取模型(SA-Unet)。本文提出的SA-Unet模型编码阶段采用阶段输入融合策略(Stage input fusion strategy, SIFS),充分利用图像的多尺度信息减少空间位置信息丢失。解码阶段通过嵌入阶段注意力模块(Stage attention module,SAM)聚焦电力线特征,从大量信息中快速筛选出高价值信息。实验结果表明,该方法在复杂背景的多场景中具有良好的性能。  相似文献   
94.
In the present work, in-situ Ti5Si3 reinforced special brasses were prepared by melt reaction method. The synthesized Ti5Si3 phase shows various morphologies in brasses with different Ti5Si3 content, and the3 D morphological evolution of primary Ti5Si3and its growth mechanism were investigated. The Ti5Si3 crystal, which bears D88 hexagonal crystal structure, grows along <0001> direction and is revealed by{1010} faces during growth. With the increase of Ti5Si3 content in the brasses, the morphology of primary Ti5Si3significantly changes from fibers to hexagonal prisms to short-rods with hollow. In addition,the influence of Ti5Si3 volume fraction and morphology on the wear behavior of special brass was also revealed. It was substantiated that the wear resistance increases with the increasing volume fraction of Ti5Si3, and the corresponding wear mechanism changes from delamination to slight adhesive wear and abrasive wear. However, the friction coefficient shows an abnormal increase when most of the Ti5Si3 containing hollows appears in the brass. That is mainly due to the fact that the Ti5Si3 is easier to break and fall off resulted by the hollow as a crack source, which makes it unable to resist the plastic deformation of the contact surface during the sliding.  相似文献   
95.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
96.
中国南海海域部分天然气水合物储层中地层砂为高泥质含量细粉砂,开采防控砂难度较大。针对高泥质细粉砂挡砂机制问题,使用粒度中值为10.13 μm的泥质细粉砂样品,模拟单向气液携砂流动条件,使用绕丝筛板、金属烧结网、金属纤维、预充填陶粒4类挡砂介质在20~80 μm挡砂精度下进行挡砂模拟实验,采用显微成像系统观察挡砂介质内部及表面砂粒沉积与堵塞动态,分析介质流通性能和挡砂性能变化,总结堵塞规律、微观挡砂机制与形态及其控制因素。研究结果表明,不同类型和精度的挡砂介质对泥质细粉砂的堵塞总体呈现堵塞开始、堵塞加剧和堵塞平衡3个阶段。随着驱替进行,挡砂介质渗透率逐渐降低,幅度会高达90%以上;同时过砂速度减缓,最终过砂率为5%~10%。根据堵塞规律和微观图像分析,提出了粗组分分选桥架、局部砂团适度挡砂、整体砂桥阻挡等挡砂介质对泥质细粉砂的3种微观挡砂机制。以粗组分分选桥架挡砂机制为主的挡砂工况下,挡砂介质堵塞渗透率较高,但过砂率超过15%,挡砂效果较差;以整体砂桥挡砂机制为主时,过砂率在10%以下,挡砂性能较好,但各类挡砂介质的堵塞渗透率不足1 D,流通性能较差。局部砂团适度挡砂机制为主时介质挡砂性能及流通性能介于两者之间。挡砂介质对天然气水合物储层泥质细粉砂的微观挡砂机制和形态受挡砂介质类型、精度、地层砂特征以及流动条件等因素控制,其规律对于水合物泥质细粉砂防控砂优化有指导意义。  相似文献   
97.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
98.
《Ceramics International》2021,47(18):25551-25557
Silicon carbide surface modification is still a challenging task. Its modification mechanism is also still unclear. This paper provides a study of the surface modification mechanism of KH5X0 (X = 5, 6, 7, 8, 9) on the silicon carbide (111) using density functional theory. The electronic structures and densities of states of KH5X0 (X = 5, 6, 7, 8, 9) on SiC surfaces indicates that the surface modification mechanism is attributed to the electronic effects of the functional groups of KH5X0 (X = 5, 6, 7, 8, 9). From the results the easier it is for a functional group to obtain electrons, the better the modifying performance of silane coupling agent will be. Furthermore, the interface energy results showed that silicon carbide (111) modification performance by KH580 silane and KH590 silane is better than KH550, KH560, and KH570. The present work provides theoretical guidance for the fabrication of SiC heat sink products.  相似文献   
99.
100.
In this work, MoAlB samples for plasma exposure test were condensed by spark plasma sintering at 1200 °C for 10 min. Ablation resistance of MoAlB ceramic was investigated in a plasma torch facility for about 30 s at high temperature range of ~1670?2550 °C, which provided a quasi-real hypersonic service environment. The results showed that the linear ablation rate was increased from 0 μm/s at ~1670 °C to 86.4 μm/s at ~2550 °C. At ~1670 °C, the ablated surface of MoAlB ceramic was covered by Al2O3 layer, presenting excellent ablation resistance. At ~2220 °C, the macroscopic cracks were induced by thermal stress, which opened up channels for the inward diffusion of oxygen and deteriorated the ablation resistance of the substrate. Above ~2400 °C, the volatile MoO3 and B2O3 and the erosion of viscous oxides by the high shearing force of plasma stream were the main ablation mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号